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ABSTRACT 
A comparative study is made between different flow models for analysis of natural convection in a 
differentially heated vertical square cavity filled with a fluid saturated porous medium. The solution is 
obtained by using a finite element method. The Darcy-modified Rayleigh number, Ra*, is varied from 50 
to 1000 while the Darcy number, Da, ranges from 5 x 10 -7 to 10-2. It is generally observed that for small 
values of Ra* and Da, all other models converge with the Darcy flow model. However, for large values of 
Ra* and Da, the Darcy flow model predicts the highest heat transfer rate, and the Brinkman-Forchheimer 
extension yields the lowest heat transfer rate whilst prediction from the Brinkman-extended model lies in 
between. 
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NOMENCLATURE 

A dimensionless constant T temperature 
B dimensionless constant Tc temperature at the cold wall 
c isobaric specific heat Th Temperature at the hot wall 
C dimensionless constant ∆T temperature difference, (Th — Tc) 
Da Darcy number, K/L2 u horizontal velocity component 
g gravitational acceleration |u| absolute velocity, 
k thermal conductivity of the fluid U dimensionless horizontal velocity com-
keff effective thermal conductivity of the ponent, 

fluid medium |U|dimensionless absolute velocity, 
K permeability 
L dimension of the square cavity v vertical velocity component 
Nu local Nusselt number V dimensionless vertical velocity compo-
Nu average Nusselt number nent, 
p pressure x horizontal coordinate 
Pr Prandtl number, v/α X dimensionless horizontal coordinate, 
Ra Rayleigh number, gβ(Th — Tc)L3/vα x/L 
Ra* Darcy-modified Rayleigh number, y vertical coordinate 

gβ(Th— Tc)KL/vα Y dimensionless vertical coordinate, y/L 
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Greek symbols v kinematic viscosity of the fluid, μ/p 
ρ fluid density 

x thermal diffusivity, k/ρc Ψ, dimensionless stream function 
β isobaric coefficient of thermal expansion Ω dimensionless vorticity 

of the fluid 
0 dimensionless temperature, 

(T - TC)/(TH - TC) Subscripts 
μ dynamic viscosity of the fluid c cold wall 
μeff effective viscosity of the porous medium h hot wall 

INTRODUCTION 

Natural convection in porous media finds its application in such diverse areas as geothermal 
energy extraction, solidification of castings, building insulation etc. Many of these problems can 
be modelled as the case of natural convection in a differentially heated rectangular enclosure 
filled with fluid saturated porous media. Comprehensive review in this area is available in Cheng1. 

Theoretical studies on natural convection in porous enclosures are reported in References 
2-13. The Darcy equations of motion subjected to an impermeable boundary condition are 
solved in References 2-8, while extended versions of Darcy's law are treated in References 9-13. 
Walker and Homsy2 carried out an asymptotic solution to the Darcy equations to study natural 
convection in rectangular enclosures. A finite element solution based on the Galerkin formulation 
was presented by Hickox and Gartling3 to study heat transfer in a shallow porous cavity. 
Shiralkar et al.4 reported a numerical study of natural convection and presented correlations of 
the Nusselt number for different aspect ratios of the cavity. The effect of aspect ratio on flow 
structure and heat transfer was investigated by Prasad and Kulacki5. A detailed study of 
anisotropic effects of permeability and thermal conductivity on the flow and heat transfer in a 
square cavity was presented by Ni and Beckermann6. Burns et al.7 studied analytically the 
impact of wall leakage on heat transfer in a porous slot with different thermal boundary 
conditions. The influence of a thin protrusion from the active wall of a rectangular enclosure 
on flow patterns and heat transfer was investigated by Bejan8. 

Much earlier than the above-mentioned studies, Chan et al.9 applied the Brinkman-extended 
Darcy formulation to account for the viscous drag in their study with different aspect ratios of 
the cavity. Lauriat and Prasad10 incorporated the transport terms in the Brinkman-extended 
Darcy equations of motion. They observed that the contribution of the transport terms on the 
overall heat transfer rate is generally negligible. They encountered convergence difficulties at 
high values of modified Rayleigh and Darcy numbers, and indicated the incorporation of the 
Forchheimer extension as a possible remedy. To account for the inertia effect in the inertial flow 
regime, the Forchheimer-extended Darcy equations subjected to the impermeable boundary 
condition were adopted by Prasad and Tuntomo11 and results for high values of the modified 
Rayleigh number were presented by them. Beckermann et al.12 modelled their analysis on the 
Brinkman-Forchheimer-extended Darcy equations to study the effects of these extensions. They 
noted that the relative importance of the inertia term modelled through the Forchheimer extension 
assumes significance mainly at low Prandtl numbers. They also suggested that both these 
extensions are equally important for flow in a highly porous medium. The effects of the inertial 
and viscous forces were further investigated by Lauriat and Prasad13 via the Brinkman-
Forchheimer-extended Darcy equations with the transport terms. The non-Darcian effects on 
flow and heat transfer were studied and criteria to delimit the non-Darcian flow regime were 
presented by them. 
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Apart from the above-mentioned studies, natural convection in layered porous media and 
layered fluid-porous media were also studied by adopting alternative flow models1'*"19. 
Poulikakos and Bejan14 studied natural convection in a vertically and horizontally layered 
porous media with isothermal side walls. Lai and Kulacki15 investigated a vertically layered 
porous cavity with a uniform heat flux imposed on one of the side walls and an isothermal 
condition on the other side wall. The Darcy flow model was adopted in both of these studies. 
The Darcy flow model ensures continuity of velocity at the interface of porous layers. However, 
to ensure matching of the normal and shear stresses at the interface, the Brinkman extension 
was introduced in References 16-19. Beckermann et al.16,17 adopted the Brinkman-Forchheimer 
extensions to study flow and heat transfer in a square cavity with layered fluid and porous 
zones. The studies by Arquis and Caltagirone18 and Breton et al.19 adopted the Brinkman 
extension with Navier-Stokes type transport terms to study heat transfer in a square cavity with 
porous layers on the side walls. The Forchheimer extension was neglected in References 18, 19 
based on the assumption that the pore diameter based Reynolds number is close to one. Excluding 
the studies in References 2, 3 and 7, all the works discussed above have been analyzed by a 
finite difference method. 

From the above discussion on some of the reported theoretical studies on natural convection 
in porous media, it is evident that all possible combinations of Darcy's law with various extensions 
have been attempted by different authors. Besides, the area suffers from a lack of adequate 
experimental results. It is in this context, the present authors, while working on another related 
problem, were faced with the difficulty of adopting the appropriate model and subsequently 
decided to make the present comparative study on some of the existing models for natural 
convection in a porous square cavity. In the studies of flow through porous media, Darcy's law 
occupies the central position. Darcy's law is essentially a balance of the viscous force, gravitational 
force and pressure gradient. It neglects the inertia effect and, hence, applicable for low velocity. 
For Reynolds numbers, based on the pore diameter or the square root of the permeability as 
the length scale, of the order of one, Darcy's law accurately predicts the flow. Detailed discussions 
on the Darcy flow model are available in References 1, 20-22. For Reynolds numbers exceeding 
the order of one, the Darcy flow model is found to be inadequate and the Forchheimer extension 
is proposed. The Forchheimer extension, in the form of a quadratic velocity term, is introduced 
to take care of the inertia effect1,22. On the other hand, for flow through porous medium of 
large permeability, the flow model is expected to be reduced to the viscous flow limit. Thus, the 
Brinkman extension is introduced to handle such a situation. The viscosity associated with the 
momentum diffusion terms may have a different value than the fluid viscosity1. Moreover, it 
ensures the automatic matching of the interfacial stresses for flow through layered porous media 
of different permeabilities17. Extending the same logic of flow through porous media of large 
permeability, it is argued that in the limiting case, the equations of motion must be reduced to 
the Navier-Stokes equations. Hence, transport terms are also added along with the Brinkman 
extension in some cases10,13,19. In the models used by Lauriat and Prasad10,13, the effect of 
porosity is introduced by dividing the convective terms by the square of the porosity. On the 
other hand, Breton et al.19 have simply adopted the convective terms, tacitly adopting the 
porosity close to unity. 

In the present work, a comparative study is made between the Darcy equations, the 
Brinkman-extended Darcy equations, the Brinkman-extended Darcy equations with 
Navier-Stokes type transport terms and the Brinkman-Forchheimer-extended Darcy equations 
to explore natural convection in a square cavity with differentially heated isothermal side walls 
and adiabatic horizontal walls. For the Darcy flow model, the impermeable wall boundary 
condition and for the Brinkman extended models, the impermeable and no-slip boundary 
conditions are imposed on the walls. A solution to the system of conservation equations is 
obtained by a finite element method. The Newton-Raphson algorithm is adopted to achieve 
rapid convergence. 
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ANALYSIS 

Problem geometry and model equations 
The problem geometry considered is a square cavity with L as the length of each side (refer 

to Figure 1). The left and right vertical walls are maintained at Tc and Th (Th> Tc) respectively, 
while the top and bottom walls are adiabatic. The cavity is filled with an isotropic and 
homogeneous porous medium, saturated with air. All the thermophysical properties are constant 
except the density variation in the body force term which obeys the Boussinesq approximation. 
Considering steady, two-dimensional flow, the governing equations are: 

where |u| = and u and v are velocity components in the x and y directions, and p and 
T are pressure and temperature, respectively. ρ, μ, c and β are density, viscosity, specific heat 
at constant pressure and coefficient of thermal expansion of the fluid, respectively. K is the 
permeability of the porous matrix. μeff and keff are effective viscosity and thermal conductivity, 
respectively. In the present study we have assumed μeff = μ and keff = k. 

A, B and C are constants such that: 
A = 0, B = 0, C = 0 for the Darcy flow equations (Model I) 
A = 0, B = 1, C = 0 for the Brinkman-extended Darcy equations (Model II) 
A = 1, B=1, C = 0 for the Brinkman-extended Darcy equations with Navier-Stokes 

type transport terms (Model III) 
A = 0, B= 1, C = 0.55 for the Brinkman-Forchheimer-extended Darcy equations (Model 

IV) 
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Defining the following dimensionless variables: 

the following dimensionless forms of the conservation equations are obtained: 

where |U| = 
The following dimensionless parameters appear in the governing equations: 

Ra = gβ∆TL3/(vα) Rayleigh number 
Pr = v/α Prandtl number 

Da = Darcy number 

v and a are the kinematic viscosity and the thermal diffusivity of the fluid medium, respectively. 
In addition to the above mentioned dimensionless parameters, a Darcy-modified Rayleigh 
number is defined as Ra* = Ra x Da. 

Equations (5)-(8) are subjected to the following hydrodynamic boundary conditions: 

Model I Models II, 
III and IV 

U = 0 U = 0,V = 0 at X = 0,l 0 ≤ Y ≤ 1 
V = 0 U = 0, V = 0 at Y = 0,1 0 ≤ Y ≤ 1 

For Model I, only the impermeable boundary condition is specified whereas for Models II, III 
and IV, the no-slip and impermeable boundary conditions are prescribed. 

The thermal boundary conditions are as follows: 

0 = 0 at X = 0 0 ≤ Y ≤ 1 
0 = 1 at X = 1 0 ≤ Y ≤ 1 

= 0 at Y = 0,1 0 < X < 1 

Solution procedure 
The set of equations (5)-(8) is discretized by employing the conventional Galerkin scheme. 

The nonlinearities are treated by the Newton-Raphson method23 and the resulting system of 
linear equations are solved by a Frontal solver. An eight-noded isoparametric element is used 
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for discretization of the solution domain. A quadratic shape function is used for interpolation 
of velocity and temperature fields, while a linear shape function is assumed for interpolation of 
pressure. Once a solution is obtained to the set of equations (5)-(8), the stream function solution 
is obtained as a part of post-processing operation. The solution for the stream function is obtained 
from the following equation: 

with Ψ = 0 on all the bounding surfaces (X = 0, 1 and Y = 0, 1) where Ψ is the nondimensional 
stream function defined as: 

and Ω is the nondimensional vorticity, defined as: 

Distribution of the Nusselt number along the cold and hot walls are defined as: 

and the average Nusselt number is calculated as: 

where subscripts c and h denote cold and hot wall quantities respectively. 

Grid independence study and convergence criteria 
The grid independence study has been carried out with Ra= 108 and Da= 10 - 5 . The study 

has been started with a nonuniform mesh of 14 x 14 elements along both the x and y directions. 
Subsequently, refined meshes have been considered with 18 x 14, 22 x 14, 26 x 14 and 22 x 18 
elements in the x and y directions, respectively. Since the front-width increases with the increase 
of element numbers in both the coordinate directions, a mesh of 22 x 14 has been finally adopted 
for all the subsequent studies. A greater refinement of the mesh has been considered in the x 
direction, along which the thermal gradient is steeper. To resolve the sharp velocity and 
temperature gradients near the boundaries, finer meshes have been adopted near the solid walls. 
The study has been performed, individually, for all the models considering the variations of such 
quantities as maximum U and V velocities,ψmax, etc. However, for the sake of brevity, only 
ψmax and are presented in Table 1. 

For the convergence criteria, the limits of relative change of any variable and the weighted 
nodal residue are taken as 10 - 4 and 10"8 respectively for Models I, II and III and the same 
are set to 10 - 3 and 10 - 6 , respectively, for Model IV. A less stringent convergence criteria is set 
for Model IV because of its relatively slower convergence pattern compared to the other models 
considered. Furthermore, the centro-symmetric nature of the flow and the overall energy balance 
on the hot and the cold walls are considered as criteria of additional checks for each of the 
cases reported in the present study. 
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Table I Results of grid independence study 

A. Darcy Model (Ra = 108, Da = 10 -5) 

Grid size 

14 x 14 

18 x 14 

22 x 14 

26 x 14 

22 x 18 

Ψmax x 102 
(X,Y) 

0.244 
(0.690, 0.440) 
0.245 
(0.214, 0.560) 
0.243 
(0.214, 0.560) 
0.243 
(0.242, 0.560) 
0.243 
(0.214, 0.554) 

14.102 

14.010 

13.954 

13.952 

13.904 

B. Brinkman-extended Darcy Model (Ra=10 8 , 
D a = 10-5) 

Grid size 

14 x 14 

18 x 14 

22 x 14 

26 x 14 

22 x 18 

(X, Y) 

0.225 
(0.690, 0.440) 
0.225 

(0.786, 0.440) 
0.223 
(0.690, 0.440) 
0.223 

(0.758, 0.440) 
0.223 
(0.690, 0.446) 

12.487 

12.458 

12.408 

12.407 

12.375 

C. Brinkman-extended Darcy Model with convec-
tive terms (Ra = 108, Da = 10 -5) 

Grid size 

14 x 14 

18 x 14 

22 x 14 

26 x 14 

22 x 18 

(X, Y) 

0.224 
(0.690, 0.440) 
0.224 
(0.786, 0.440) 
0.222 

(0.690, 0.440) 
0.222 
(0.758, 0.440) 
0.222 
(0.690, 0.446) 

12.482 

12.455 

12.406 

12.404 

12.373 

D. Brinkman-Forchheimer-extended Darcy Model 
(Ra = 108, Da = 10-5) 

Grid size 

14 x 14 

18 x 14 

22 x 14 

26 x 14 

22 x 18 

(X,Y) 

0.189 
(0.690, 0.440) 
0.188 

(0.437, 0.500) 
0.189 
(0.690, 0.440) 
0.189 

(0.694, 0.440) 
0.189 
(0.690, 0.446) 

10.386 

10.358 

10.296 

10.296 

10.267 

Validation of the code 

For the purpose of validation of the code and checking the accuracy of the results, a comparison 
of the overall Nusselt number is made with some of the available works. The overall agreement 
is found to be quite satisfactory. Details of this comparison is furnished in Table 2. 

RESULTS AND DISCUSSION 

In the present study the following range of parameters is considered: 
Ra* = 50, 100, 200, 500, 1000 

Each of the above Ra* is obtained by considering Ra = 105, 106, 107, 108 and corresponding 
values of Da are considered. The Prandtl number, Pr, of the fluid is consistently taken as 0.71 
except for the purpose of comparison of Model IV in Table 2. 

With the above-mentioned set of parameter combinations, analysis is performed with each of 
the models to study the flow structure and heat transfer characteristics in each case. In order 
to emphasize the variation between the four models, the extreme values of Ra* and Da have 
been considered which are expected to highlight the important aspects, particularly the near 
wall behaviour. 
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Table 2 Comparison of average Nusselt number 

Ra* 

50 
100 
200 
500 

1000 

Present 
work 

1.988 
3.125 
5.016 
9.132 

13.954 

A. Darcy formulation (Model I) 

Walker and 
Homsy2 

1.98 
3.097 
4.89 
8.66 

12.96 

Shiralkar 
et al.4 

3.115 
4.976 
8.944 

13.534 

Ni and 
Beckermann6 

3.013 

8.892 
13.42 

Bejan8 

1.897 
3.433 
6.044 

Beckermann 
et al.12 

1.981 
3.113 
5.038 
9.308 

B. Brinkman-extended Darcy formulation (Model II) 

Ra* 

100 

1000 

Da 

1 0 - 3 

10-4 

10-5 

10 - 6 

10 - 2 

10-3 

10-4 

10-5 

Present work 

2.425 
2.857 
3.034 
3.094 

4.262 
7.208 

10.278 
12.408 

Lauriat and Prasad10 

2.41 
2.84 
3.02 
3.06 

4.26 
7.29 

10.34 
12.42 

C. Brinkman-Forchheimer-extended Darcy formulation (Model IV) 

Ra* 

104 

Da 

10-1 

Pr 

1.0 

Present work 

4.357 

Beckermann et al.12 

4.385 

Vertical velocity at cavity mid-height 
The vertical velocity (V) distributions at cavity mid-height (Y = 0.5) are shown in Figure 

2(a)-(d). Figure 2(a) corresponds to Ra* = 50 (Ra = 108, Da = 5 x 10-7). In this figure all the 
curves are found to merge with each other except in the vicinity of the wall. However, for Models 
II, III and IV the maximum velocity is attained at a location very close to the wall. Figure 2(b) 
corresponds to the same value of Ra* = 50 with a different Rayleigh and Darcy number 
combination (Ra = 105, Da = 5 x 10-4). In this case the deviation between the models are more 
prominent compared to the case presented in Figure 2(a). Moreover, the location of the peak 
velocity is found to shift away from the wall as the Da value is increased. Figures 2(c) and 2(d) 
correspond to the value of Ra* = 1000. The disagreement between the different models is evident 
in both cases, with the deviation being more prominent in Figure 2(d) than in Figure 2(c). 
Unlike Figures 2(a) and 2(b), where the flow is found to occur throughout the cavity, stagnation 
in the core is evident from the velocity distributions in Figures 2(c) and 2(d). 

For any fixed value of Ra*, the velocity distribution for Model I remains similar. However, 
due to the Rayleigh number dependent way of velocity scaling, the non-dimensional velocity is 
reduced by a factor of Hence the magnitudes are different between Figures 2(a) and 2(b) 
and between Figures 2(c) and 2(d). For all the cases, Model II and Model III practically overlap 
with each other, with negligible difference visible in Figure 2(d) corresponding to the highest 
Darcy number (Da= 10-2) considered in the present work. The magnitude of the maximum 
velocity is highest for Model I. Comparatively the magnitude of the maximum velocity is smaller 
for Models II and III due to the introduction of the frictional term. In the case of Model IV, 
the magnitude of the maximum velocity is still smaller due to the incorporation of the inertia 
term. With regards to the location of the maximum velocity, it occurs exactly on the solid wall 
for Model I where only the impermeable boundary condition is prescribed. However, for Model 
IV, the location is nearer to the wall than those for Models II and III. 
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Temperature distribution at cavity mid-height 
The temperature distributions at cavity mid-height (Y = 0.5) are shown in Figures 3(a)-(d). 

Figures 3(a) and 3(b) correspond to Ra* = 50 where all models virtually coincide with each 
other. The temperature distributions in these two cases (Ra = 108, Da = 5 x 10-7 and Ra = 105, 
Da = 5 x 10-4) are identical because the flow is Darcian in nature and the flow structure and 
heat transfer are uniquely governed by the value of Ra*. The more or less linear variation of 
temperature indicates that the transport is conduction dominated. The effects of convection and 
core stratification are evident in Figures 3(c) and 3(d) corresponding to Ra* = 1000. Again for 
Figure 3(c), the temperature distribution for Models II, III and IV are found to collapse on 
that for Model I. In Figure 3(d), the effects of the Brinkman extension and the Forchheimer 
extension are clearly evident. In all these cases, Models II and III show an identical distribution 
indicating that the contribution of the transport term in Model III is negligible. However, with 
the introduction of the frictional terms, the flow is retarded when compared to that in Model 
I. This in turn causes a reduction in heat transfer compared to the Darcian flow model. 
Furthermore, with the introduction of the inertia term in Model IV, the flow is further arrested 
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causing further reduction in heat transfer. This is corroborated in Figure 3(d). Model I indicates 
the steepest temperature gradient near the wall and Model IV indicates the lowest value of near 
wall temperature gradient while Models II and III lie in between Model I and Model IV. 

Stream function and isotherm contours 
The flow patterns and isotherm contours are presented in Figures 4(a)-4(d) and Figures 

5(a)-5(d). In both of these sets of figures, the modified Rayleigh number Ra* is taken as 1000. 
The strength of circulation in each case is indicated by the value of ψmax. The magnitude and 
the location of ψmax are presented in each figure. The physical boundary of the problem domain 
is set to the value of ψ = 0.0. The other stream function contours are equally spaced between 
the values of ψmax and ψ = 0.0. 

Figures 4(a)-4(d) correspond to Models I, II, III and IV. Ra = 108 and Da = 1 0 - 5 are 
considered in these cases. From these figures, it is evident that the overall nature of the streamlines 
are similar to each other for all the models. The flow patterns obtained are typical of the Darcian 
flow regime. Due to the small value of Da, all models tend to behave like the Darcy flow model. 
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The Darcian flow is characterized by the occurrence of the maximum vertical velocity exactly 
on the vertical solid wall. Moreover, a velocity boundary layer is set up in the lower part of the 
hot wall. In the upper part of the hot wall, the flow tends to bend towards the top of the cold 
wall, following the upper horizontal wall. Along the cold wall, a similar type of boundary layer 
develops from the upper part of this wall. In the lower part of the cold wall, the flow bends 
toward the bottom part of hot wall along the lower adiabatic wall to make up the void created 
by the buoyant fluid at the bottom of the hot wall. In this way, the circulation is established in 
the cavity. The axis of the streamlines is oriented along a line, inclined upward from the hot to 
the cold wall. With the introduction of the friction terms in Model II and incorporation of the 
no-slip boundary condition, the position of the peak velocity shifts away from the solid wall. 
But it still occurs at a location very close to the vertical walls, as seen from Figure 2(c). However, 
due to the frictional effect, introduced by the momentum diffusion terms, the magnitude of the 
peak velocity decreases in comparison to the Darcy model. This results in a slight thickening 
of the boundary layer as observed in Figure 4(b). The incorporation of the convection terms 
in Model III does not significantly affect the flow patterns in Figure 4(c) at this low value of 
Darcy number (Da = 10 -5). In Model IV, due to the simultaneous presence of the friction and 
inertia terms, the flow is further retarded. This is evident from the increased spacings between 
the streamlines, as seen in Figure 4(d). The gradual decrease in the strength of circulation for 
Models II, III and IV due to the friction, convection and inertia terms is corroborated by the 
decreasing values of ψmax, shown alongside Figures4(b) to 4(d) respectively, compared to the 
value of ψmax, in Figure 4(a) for Model I. 

The isotherm contours are also presented alongside the streamline patterns in Figures 4(a)-(d) 
for the different models with Ra= 108 and Da= 10 - 5 . The overall nature of the isotherms in 
Figures 4(b)- 4(d), corresponding to Models II, III and IV, are quite similar to the isotherms 
in Figure 4(a) for Model I. The isotherms in Figure 4(a) are typical of the Darcy flow model. 
Moreover, since the Darcy number is small (Da = 10 -5), the flow is Darcian in nature. Thus, 
the flow, and, consequently, the isotherm patterns for Models II, III and IV agree closely with 
those of Model I. However, a close inspection of the isotherms in these figures reveal a slight 
increase in spacings between isotherms, particularly at the top and bottom corners of the cold 
and hot walls respectively, for Models II, III and IV compared to those for Model I. This 
rarefaction of isotherm spacings in Models II, III and IV over those in Model I can be attributed 
to the gradual decrease of the flow intensity in Models II, III and IV compared to that in Model 
I. With the decrease in intensity of flow, the overall rate of heat transfer diminishes which is 
reflected in the slight rarefaction of isotherm spacings gradually in Figures 4(a)-4(d). 

The stream function and isotherm contours are presented in Figures 5(a)-5(d), corresponding 
to Models I, II, III and IV, for Ra= 105 and Da = 10 - 2 . The large value of Darcy number is 
considered to highlight the distinctive features of the models. Figure 5(a) shows the streamlines 
for the Darcy model. For the Darcy model, the flow pattern is solely determined by the value 
of Ra*, rather than the values of Ra and Da. This is evident from the identical streamline 
patterns shown in Figures 4(a) and 5(a). Figure 5(b) corresponds to the Brinkman-extended 
Darcy model. Due to the frictional effects, incorporated in Model II, the flow slows down 
considerably. This is distinctly evident from the values of ψmax, for the large value of Da, in 
Figure 5(b) as compared to the same in Figure 5(a). For Ra* = 1000 and Da = 10 - 2 , the flow 
pattern tends to approach that of a buoyancy induced flow in absence of a porous medium 
when Model III is considered. In this case, due to the incorporation of the convection terms, 
the buoyant fluid moves upward along the hot wall and impinges on the top wall. The fluid 
then suffers a reflection and moves towards the cold wall. The heated fluid, as it comes in contact 
with the cold wall, gets heavier and moves down the cold wall. The fluid then strikes the bottom 
adiabatic wall with a high velocity and another hydraulic jump occurs. Then, it moves rapidly 
horizontally towards the hot wall to make up the void at the base of the hot wall. In this way, 
the circulation is established in the cavity. One of the distinctive features of this model is that, 
in this case, the axis of the circulation is tilted downward from the hot to the cold wall. This 
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reversal of the direction of the tilt of the circulation is due to the occurrence of the couple of 
hydraulic jumps near the top-right and bottom-left corners of the cavity. The flow pattern for 
Model IV, as seen from Figure 5(d), is one of a heavily retarded flow caused by the inertia effect 
of the Forchheimer extension. Besides, due to the presence of the momentum diffusion terms, 
in Models II, III and IV, the circulation penetrates deeper towards the centre of the cavity. This 
is in contrast to Model I. For Model I, in absence of the restrictive effects imposed by the inertia 
term, the flow intensity is large. Moreover, due to the absence of the momentum diffusion terms, 
the high velocity flow, remains largely restricted near the active walls of the cavity. A large part 
in the central portion of the cavity experiences a very weak circulation. 

A brief discussion on the isotherms shown alongside the streamlines is in order for the different 
models in Figures 5(a)-5(d) for Ra = 105 and Da = 10 - 2 . The isotherms for Model I, shown 
in Figure 5(a) are exactly similar to those shown in Figure 4(a) for Ra = 108 and Da = 10 - 5 . 
This is expected because of the same value of modified Rayleigh number (Ra* = 1000) in these 
two cases, which determines the flow and heat transfer in the Darcy flow model. With the 
introduction of viscous diffusion terms and incorporation of no-slip boundary conditions in the 
Brinkman-extended Darcy model, the flow intensity is largely reduced. This results in a sharp 
decrease in heat transfer rate. The drop in heat transfer rate is manifested through wider spacings 
between isotherms in Figure 5(b) compared to those for the Darcy model as shown in Figure 
5(a). Furthermore, in Model III, due to the incorporation of transport terms, coupled with a 
large value of Da = 10 - 2 , the flow approaches the buoyancy driven flow of a free fluid. As a 
result, the isotherms are similar to those observed in a differentially heated vertical square cavity. 
In Model IV, the inertia terms of the Forchheimer-extension causes further retardation of the 
flow. This results in further decrease in heat transfer rate. This is evident from the increase in 
spacings between isotherms compared to all other models. 

Nusselt number distribution on cold wall 
The Nusselt number distribution on the cold wall are shown in Figure 6(a)-6(d). Figures 

6(a) and 6(b) correspond to Ra* = 50, while Figures 6(c) and 6(d) correspond to Ra* = 1000. 
In Figure 6(a), the flow is found to be fully Darcian due to the very low value of Da = 5 x 10 - 7 , 
where all models practically coincide with each other. In Figure 6(b), deviation of the non-Darcian 
models (Models II, III and IV) from the Darcian flow model (Model I) is evident due to the 
increased value of Da. The non-Darcian models are found to predict lower values of the Nusselt 
number compared to the Darcian model for any given value of Ra*. The reasons are explained 
during the discussion on temperature distribution at cavity mid-height. In Figure 6(d), the 
deviation between Model I and Model II, III and IV reaches a maximum due to the large value 
of Da=1 x 10 - 2 . 

The Nusselt number distribution shows an identical pattern, as long as Ra* remains constant, 
for Model I. However, for other models, this distribution depends exclusively on the value of 
Ra and Da. For all cases, Models II and III show identical distributions indicating the negligible 
contribution of the transport terms. For any value of Ra*, Model I predicts the highest value 
of and Model IV predicts the lowest value of while the Models II and III predictions 
in between. 

Overall Nusselt number and maximum stream function (Ψmax) 
The overall Nusselt number and maximum stream function together with its location are 

given in Tables 3-7 for different modified Rayleigh numbers (Ra*). 
At any fixed Ra*, the is found to be independent of Ra and Da combinations for Model 

I. However, for the Rayleigh number dependent way of velocity scaling, the magnitude of Ψmax 
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Table 3 Average Nusselt number and maximum stream function (Ψmax) at Ra* = 50 

Da 

5 x 10-4 

5 x 10-5 

5 x 1 0 - 6 

5 x 10-7 

Ψmax 
(X, Y) 

Ψmax 
(X, Y) 

Ψmax 
(X, Y) 

Ψmax 
(X, Y) 

Model I 

1.988 
0.107 x 10-1 

(0.500, 0.500) 

1.988 
0.338 x 10-2 

(0.500, 0.500) 

1.988 
0.107 x 10-2 

(0.500, 0.500) 
1.988 
0.338 x 10-3 

(0.500, 0.500) 

Model II 

1.765 
0.967 x 10 - 2 

(0.500, 0.500) 

1.911 
0.328 x 10 - 2 

(0.500, 0.500) 

1.963 
0.106 x10-2 

(0.500, 0.500) 

1.979 
0.338 x 10-3 

(0.500, 0.500) 

Model III 

1.765 
0.967 x 10-2 

(0.500, 0.500) 

1.911 
0.328 x 10 - 2 

(0.500, 0.500) 

1.963 
0.106 x 10 - 2 

(0.500, 0.500) 

1.979 
0.338 x 10 - 3 

(0.500, 0.500) 

Model IV 

1.667 
0.899 x 10-2 

(0.500, 0.500) 

1.858 
0.318 x 10-2 

(0.500, 0.500) 

1.942 
0.105 x 10-2 

(0.500, 0.500) 

1.971 
0.337 x 1 0 - 3 

(0.500, 0.500) 
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Table 4 Average Nusselt number and maximum stream function (Ψmax) at Ra* = 100 

Da 

1 0 - 3 

10 - 4 

10 - 5 

10-6 

Ψmax 
(X, Y) 

Ψmax 
(X, Y) 

Ψmax 
(X, Y) 

Ψmax 
(X, Y) 

Model I 

3.125 
0.177 x 10-1 

(0.500, 0.500) 

3.125 
0.559 x 10-2 

(0.500, 0.500) 

3.125 
0.177 x 10-2 

(0.500, 0.500) 

3.125 
0.559 x 10 - 3 

(0.500, 0.500) 

Model II 

2.425 
0.147 x 10-1 

(0.500, 0.500) 

2.857 
0.524 x 10-2 

(0.500, 0.500) 

3.034 
0.173 x 10-2 

(0.500, 0.500) 

3.094 
0.557 x 10-3 

(0.500, 0.500) 

Model III 

2.425 
0.147 x 10-1 

(0.500, 0.500) 

2.857 
0.524 x 10-2 

(0.500, 0.500) 

3.034 
0.173 x 10-2 

(0.500, 0.500) 

3.094 
0.557 x 10-3 

(0.500, 0.500) 

Model IV 

2.164 
0.130 x 10-1 

(0.500, 0.500) 

2.657 
0.490 x 10-2 

(0.500, 0.500) 

2.938 
0.168 x 10-2 

(0.500, 0.500) 

3.057 
0.551 x 10-2 

(0.500, 0.500) 

Table 5 Average Nusselt number and maximum stream function (Ψmax) at Ra* = 200 

Da 

2 x 10-3 

2 x 10-4 

2 x 10-5 

2 x 10-6 

Ψmax 
(X, Y) 

Ψmax 
(X, Y) 

Ψmax 
(X, Y) 

Ψmax 
(X, Y) 

Model I 

5.016 
0.283 x 10-1 

(0.548, 0.500) 

5.016 
0.896 x 10-2 

(0.548, 0.500) 

5.016 
0.283 x 10-2 

(0.548, 0.500) 

5.016 
0.896 x 10-3 

(0.548, 0.500) 

Model II 

3.144 
0.204 x 10-1 

(0.500, 0.500) 

4.160 
0.785 x 10-2 

(0.500, 0.500) 

4.697 
0.271 x 10-2 

(0.500, 0.500) 

4.908 
0.885 x 10-3 

(0.548, 0.500) 

Model III 

3.136 
0.202 x 10-1 

(0.500, 0.500) 

4.158 
0.783 x 10-2 

(0.500, 0.500) 

4.697 
0.270 x 10-2 

(0.500, 0.500) 

4.908 
0.885 x 10-3 

(0.548, 0.500) 

Model IV 

2.676 
0.172 x 10-1 

(0.500, 0.500) 

3.626 
0.694 x 10-2 

(0.500, 0.500) 

4.342 
0.253 x 10-2 

(0.500, 0.500) 

4.745 
0.860 x 10-3 

(0.548, 0.500) 

Table 6 Average Nusselt number and maximum stream function (Ψmax) at Ra* = 500 

Da 

5 x 10-3 

5 x 10-4 

5 x 10-5 

5 x 10-6 

Ψmax 
(X, Y) 

Ψmax 
(X, Y) 

Ψmax 
(X, Y) 

Ψmax 
(X, Y) 

Model I 

9.132 
0.509 x 10-1 

(0.690, 0.440) 

9.132 
0.161 x 10-1 

(0.690, 0.440) 

9.132 
0.509 x 10-2 

(0.690, 0.440) 

9.132 
0.161 x 10-2 

(0.690, 0.440) 

Model II 

3.903 
0.277 x 10-1 

(0.595, 0.500) 

6.030 
0.119 x 10-1 

(0.500, 0.500) 

7.720 
0.450 x 10-2 

(0.500, 0.500) 

8.612 
0.154 x 10-2 

(0.690, 0.440) 

Model III 

3.858 
0.268 x 10-1 

(0.309, 0.500) 

6.004 
0.117 x 10-1 

(0.548, 0.500) 

7.711 
0.448 x 10-2 

(0.500, 0.500) 

8.612 
0.154 x 10-2 

(0.690, 0.440) 

Model IV 

3.249 
0.222 x 10-1 

(0.500, 0.500) 

4.870 
0.969 x 10-2 

(0.548, 0.500) 

6.477 
0.385 x 10-2 

(0.548, 0.500) 

7.772 
0.141 x 10-2 

(0.690, 0.440) 
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Table 7 Average Nusselt number and maximum stream function (Ψmax) at Ra* = 1000 

Da 

10-2 

10 - 3 

10-4 

10-5 

Ψmax 
(X,Y) 

Ψmax 

(X, Y) 

Ψmax 

(X, Y) 

Ψmax 
(X, Y) 

Model I 

13.954 
0.769 x 10-1 

(0.214,0.560) 

13.954 
0.243 x 10-1 

(0.214,0.560) 

13.954 
0.769 x 10-2 

(0.214, 0.560) 

13.954 
0.243 x 10-2 

(0.214, 0.560) 

Model II 

4.262 
0.325 x 10-1 

(0.690, 0.440) 

7.208 
0.149 x 10-1 

(0.214, 0.560) 

10.278 
0.613 x 10-2 

(0.214, 0.560) 

12.408 
0.223 x 10-2 

(0.690, 0.440) 

Model III 

4.176 
0.305 x 10-1 

(0.309, 0.440) 

7.136 
0.145 x 10-1 

(0.214,0.500) 

10.236 
0.607 x 10-2 

(0.214, 0.560) 

12.406 
0.222 x 10-2 

(0.690, 0.440) 

Model IV 

3.585 
0.255 x 10-1 

(0.548, 0.500) 

5.666 
0.116x 10-1 

(0.548, 0.500) 

8.012 
0.486 x 10-2 

(0.690, 0.440) 

10.296 
0.189 x 10-2 

(0.690, 0.440) 

decreases with increasing Ra. At any fixed Ra*, Model I predicts the highest value of and 
Ψmax However, with the introduction of the viscous terms in Models II and III, and consequent 
incorporation of the no-slip boundary condition, the strength of the flow weakens and a fall in 
the is observed. This fall is pronounced for high values of Da. For all practical purposes, 
Models II and III predict identical values of and Ψmax. However a slight decrement of 
and Ψmax are observed for Model III when Da is large. In Model IV, a further reduction in 
and Ψmax are evident due to the incorporation of the inertia term. The agreement between the 
different models are closer for low values of Ra* and Da and the divergence between them 
becomes pronounced for high values of Ra* and Da. 

CONCLUSIONS 

A finite element analysis is performed for comparison of alternative models for natural convection 
in a differentially heated square cavity filled with fluid saturated porous media in the range of 
50 ≤ Ra* ≤ 1000, 5 x 10-7 ≤ Da ≤ 10-2. Comparison with existing results reveal satisfactory 
agreement with the results obtained from the present analysis. 

From a comparison of velocity, temperature and heat flux distributions obtained from the 
different porous models, the following conclusions are drawn: 

(i) For low values of Ra* and Da, all models practically merge with the Darcy flow model; 
(ii) For the Darcy flow model Ra* exclusively governs the flow structure and heat transfer. 

However, for the Brinkman-Forchheimer-extended Darcy flow models, individual values 
of Ra and Da are the influencing parameters. 

(iii) For the range of Da considered in the present study, the contribution of the transport 
terms in Model III are negligible such that Models II and III predict identical results. 
However, for high values of Da, a slight reduction of flow strength and heat transfer is 
caused by the transport terms of Model III. 

(iv) For a given value of Ra*, the Darcy flow model predicts the highest maximum velocity 
at the cavity mid-height and overall heat transfer rate. For the Darcy flow model, the 
maximum velocity occurs exactly on the solid wall. On the other hand, the Brinkman-
Forchheimer-extended Darcy equations predict the weakest velocity field and lowest heat 
transfer rate. For the Brinkman-extended models (Models II and III) these values lie in 
between those of Models I and IV. 
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